If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+19x+3=0
a = 9; b = 19; c = +3;
Δ = b2-4ac
Δ = 192-4·9·3
Δ = 253
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-\sqrt{253}}{2*9}=\frac{-19-\sqrt{253}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+\sqrt{253}}{2*9}=\frac{-19+\sqrt{253}}{18} $
| 34(3r+4)=-8(2r+5) | | 30/5x=6 | | 500-7x+0.02x^2=0 | | 34-2x=-6 | | (x+13)(x-13)=-48 | | 2t×0=0 | | 52+x=2 | | 59=4+5n | | 5+-2d=11 | | 7+x/11=31/55 | | 27x+3=6;x | | 6x+3=27;x | | x-2+2x+5=90 | | 3÷5p+1÷5(40-p)=0 | | 9^x=66 | | 4s+26=70 | | 8^2x+1=(3x+2)4^3x+2 | | 6(5x+12)=8(4x-14) | | 9x=3(x-1 | | k7+6=18 | | ¼y+¾y-15=-45 | | 2d+24+36+5d=48 | | 1+1.5(2x−6)=3(6x+6)+2 | | 22-2w=12 | | 1+23 (2x−6)= 3(6x+6)+23(6x+6)+2 | | 10y-14=10y+28 | | 5x-60=-60+2x+3x | | −8(10x−1)−10= 7−8(10x+1)7−8(10x+1) | | )21-3x=6 | | 6x+24=4x–48 | | 14/5=42/x | | 140=x2+5x |